当前位置:主页 > 百科 > 电工知识 >

逐次比较型(A/D)转换器电路结构及工作原理

时间:2023-03-13 | 来源:佚名

1.转换方式
直接转换ADC
2.电路结构
逐次逼近ADC包括n位逐次比较型A/D转换器如图1所示。它由控制逻辑电路、时序产生器、移位寄存器、D/A转换器及电压比较器组成。
逐次比较型(A/D)转换器电路结构及工作原理
图1逐次比较型A/D转换器框图
3.工作原理

逐次逼近转换过程和用天平称物重非常相似。天平称重物过程是,从最重的砝码开始试放,与被称物体进行比较,若物体重于砝码,则该砝码保留,否则移去。再加上第二个次重砝码,由物体的重量是否大于砝码的重量决定第二个砝码是留下还是移去。照此一直加到最小一个砝码为止。将所有留下的砝码重量相加,就得此物体的重量。仿照这一思路,逐次比较型A/D转换器,就是将输入模拟信号与不同的参考电压作多次比较,使转换所得的数字量在数值上逐次逼近输入模拟量对应值。

对1的电路,它由启动脉冲启动后,在第一个时钟脉冲作用下,控制电路使时序产生器的最高位置1,其他位置0,其输出经数据寄存器将1000……0,送入D/A转换器。输入电压首先与D/A转换器输出电压(VREF/2)相比较,如v1VREF/2,比较器输出为1,若vI< VREF/2,则为0。比较结果存于数据寄存器的Dn-1位。然后在第二个CP作用下,移位寄存器的次高位置1,其他低位置0。如最高位已存1,则此时 vO'=(3/4)VREF。于是v1再与(3/4)VREF相比较,如v1≥(3/4)VREF,则次高位Dn-2存1,否则Dn-2=0;如最高位为0,则vO'=VREF/4,与vO'比较,如v1VREF/4,则 Dn-2位存1,否则存0……。以此类推,逐次比较得到输出数字量。

为了进一步理解逐次比较A/D转换器的工作原理及转换过程。下面用实例加以说明。
设图1电路为8位A/D转换器,输入模拟量逐次比较型(A/D)转换器电路结构及工作原理

图2 8位逐次比较型A/D转换器波形图

4.特点
(1)转换速度:(n 1)Tcp.速度快。
(2)调整VREF,可改变其动态范围。

5.转换器电路举例
常用的集成逐次比较型A/D转换器有ADC0808/0809系列(8位)、AD575(10位)、AD574A(12位)等。
例1 4位逐次比较型A/D转换器的逻辑电路如图3所示。图中5移位寄存器可进行并入/并出或串入/串出操作,其逐次比较型(A/D)转换器电路结构及工作原理

图3 4位逐次比较型A/D转换器的逻辑电路
解:电路工作过程如下:
当启动脉冲上升沿到来后,FF0~FF4被清零,Q5置1,Q5的高电平开启G2门,时钟CP脉冲进入移位寄存器。在第一个CP脉冲作用下,由于移位寄存器的置数使能端F已有0变为1,并行输入数据ABCDE置入,QAQBQCQDQE=01111。QA的低电平是数据寄存器的最高位置1,即Q4Q3Q2Q1=1000。D/A转换将数字量1000转换为模拟电压vO',送入比较器C与输入模拟电压v1比较,若输入电压vI> vO',则比较器C输出vC为1,否则为0。比较结果送D4D1

第二个CP脉冲到来后,移位寄存器的串行输入端S为高电平,QA由0变1,同是最高位QA的0移至次高位QB。于是数据寄存器的Q3由0变1,这个正跳变作为有效触发信号加到FF4的CP端使vC的电平得以在Q4保存下来。此时,由于其他触发器无正跳变脉冲,vC的信号对它们不起作用。Q3变为1后建立了新的D/A转换器的数据,输入电压在与其输出电压vO'相比较,比较结果在第三个时钟脉冲作用下存于Q3……。如此进行,直到QE由1变0,使Q5由1变0后将G2封锁,转换完毕。于是电路的输出端D3D2D1D0得到与输入电压v1成正比的数字量。由以上分析可见,逐次比较型A/D转换器完成一次转换所需的时间与其位数和时钟脉冲频率有关,位数愈少,时钟频率愈高,转换所需时间越短。这种A/D转换器具有转换速度较快,精度高的特点。

声明:本文转载自网络,不代表本平台立场,仅供读者参考,著作权属归原创者所有。我们分享此文出于传播更多资讯之目的。如有侵权,请联系我们进行删除,谢谢!

推荐阅读

扩展阅读