下面是PID控制器参数整定的一般方法: PID控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。 PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。它主要是依据系统的数学模型,经过理论计算确定控制器参数。 这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。 PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。现在一般采用的是临界比例法。利用该方法进行PID控制器参数的整定步骤如下: (1)首先预选择一个足够短的采样周期让系统工作; (2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期; (3)在一定的控制度下通过公式计算得到PID控制器的参数。PID参数的设定: 是靠经验及工艺的熟悉,参考测量值跟踪与设定值曲线,从而调整PID的大小。 比例I/微分D=2,具体值可根据仪表定,再调整比例带P,P过头,到达稳定的时间长,P太短,会震荡,永远也打不到设定要求。 PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照: 温度T:P=20~60%,T=180~600s,D=3-180s; 压力P:P=30~70%,T=24~180s; 液位L:P=20~80%,T=60~300s; 流量L:P=40~100%,T=6~60s。 书上的常用口诀: 参数整定找最佳,从小到大顺序查; 先是比例后积分,最后再把微分加; 曲线振荡很频繁,比例度盘要放大; 曲线漂浮绕大湾,比例度盘往小扳; 曲线偏离回复慢,积分时间往下降; 曲线波动周期长,积分时间再加长; 曲线振荡频率快,先把微分降下来; 动差大来波动慢。微分时间应加长; 理想曲线两个波,前高后低 4比1; 一看二调多分析,调节质量不会低。 PID参数的设置的大小, 一方面是要根据控制对象的具体情况而定; 另一方面是经验。 P是解决幅值震荡,P大了会出现幅值震荡的幅度大,但震荡频率小,系统达到稳定时间长; I是解决动作响应的速度快慢的,I大了响应速度慢,反之则快; D是消除静态误差的,一般D设置都比较小,而且对系统影响比较小。 对于温度控制系统P在5-10%之间;I在180-240s之间;D在30以下。对于压力控制系统P在30-60%之间;I在30-90s之间;D在30以下。 这里介绍一种经验法。这种方法实质上是一种试凑法,它是在生产实践中总结出来的行之有效的方法,并在现场中得到了广泛的应用。 这种方法的基本程序是先根据运行经验,确定一组调节器参数,并将系统投入闭环运行,然后人为地加入阶跃扰动(如改变调节器的给定值),观察被调量或调节器输出的阶跃响应曲线。 若认为控制质量不满意,则根据各整定参数对控制过程的影响改变调节器参数。这样反复试验,直到满意为止。 经验法简单可靠,但需要有一定现场运行经验,整定时易带有主观片面性。当采用PID调节器时,有多个整定参数,反复试凑的次数增多,不易得到最佳整定参数。下面以PID调节器为例,具体说明经验法的整定步骤: A. 让调节器参数积分系数S0=0,实际微分系数k=0,控制系统投入闭环运行,由小到大改变比例系数S1,让扰动信号作阶跃变化,观察控制过程,直到获得满意的控制过程为止。 B. 取比例系数S1为当前的值乘以0.83,由小到大增加积分系数S0,同样让扰动信号作阶跃变化,直至求得满意的控制过程。 C. 积分系数S0保持不变,改变比例系数S1,观察控制过程有无改善,如有改善则继续调整,直到满意为止。否则,将原比例系数S1增大一些,再调整积分系数S0,力求改善控制过程。如此反复试凑,直到找到满意的比例系数S1和积分系数S0为止。 D. 引入适当的实际微分系数k和实际微分时间TD,此时可适当增大比例系数S1和积分系数S0。和前述步骤相同,微分时间的整定也需反复调整,直到控制过程满意为止。 PID参数是根据控制对象的惯量来确定的。大惯量如: 大烘房的温度控制,一般P可在10以上,I=3-10,D=1左右。小惯量如:一个小电机带一台水泵进行压力闭环控制,一般只用PI控制。P=1-10,I=0.1-1,D=0,这些要在现场调试时进行修正的。对,看场合应用,PID是由比例、微分、积分三个部分组成的,在实际应用中经常只使用其中的一项或者两项,如P、PI、PD、PID等。就可以达到控制要求...plc编程指令里都会有PID这个功能指令...至于P,I,D 数值的确定要在现场的多次调试确定... 比例控制(P):比例控制是最常用的控制手段之一,比方说我们控制一个加热器的恒温100度,当开始加热时,离目标温度相差比较远,这时我们通常会加大加热,使温度快速上升,当温度超过100度时,我们则关闭输出,通常我们会使用这样一个函数 e(t) = SP – y(t); u(t) = e(t)*P SP——设定值 e(t)——误差值 y(t)——反馈值 u(t)——输出值 P——比例系数 滞后性不是很大的控制对象使用比例控制方式就可以满足控制要求,但很多被控对象 中因为有滞后性。也就是如果设定温度是200度,当采用比例方式控制时,如果P选择比较大,则会出现当温度达到200度输出为0后,温度仍然会止不住的向上爬升,比方说升至230度,当温度超过200度太多后又开始回落,尽管这时输出开始出力加热,但温度仍然会向下跌落一定的温度才会止跌回升,比方说降至170度,最后整个系统会稳定在一定的范围内进行振荡。 如果这个振荡的幅度是允许的比方说家用电器的控制,那则可以选用比例控制. 比例积分控制(PI):积分的存在是针对比例控制要不就是有差值要不就是振荡的这种特点提出的改进,它常与比例一块进行控制,也就是PI控制。 其公式有很多种,但大多差别不大,标准公式如下: u(t) = Kp*e(t) Ki∑e(t) u0 u(t)——输出 Kp——比例放大系数 Ki——积分放大系数 e(t)——误差 u0——控制量基准值(基础偏差) 大家可以看到积分项是一个历史误差的累积值,如果光用比例控制时,我们知道要不就是达不到设定值要不就是振荡,在使用了积分项后就可以解决达不到设定值的静态误差问题,比方说一个控制中使用了PI控制后,如果存在静态误差,输出始终达不到设定值,这时积分项的误差累积值会越来越大,这个累积值乘上Ki后会在输出的比重中越占越多,使输出u(t)越来越大,最终达到消除静态误差的目的。 PI两个结合使用的情况下,我们的调整方式如下: 1、先将I值设为0,将P值放至比较大,当出现稳定振荡时,我们再减小P值直到P值不振荡或者振荡很小为止(术语叫临界振荡状态),在有些情况下,我们还可以在些P值的基础上再加大一点。 2、加大I值,直到输出达到设定值为止。 3、等系统冷却后,再重上电,看看系统的超调是否过大,加热速度是否太慢。 通过上面的这个调试过程,我们可以看到P值主要可以用来调整系统的响应速度,但太大会增大超调量和稳定时间;而I值主要用来减小静态误差。 PID控制: 因为PI系统中的I的存在会使整个控制系统的响应速度受到影响,为了解决这个问题,我们在控制中增加了D微分项,微分项主要用来解决系统的响应速度问题,其完整的公式如下: u(t) = Kp*e(t) Ki∑e(t) Kd[e(t) – e(t-1)] u0 在PID的调试过程中,我们应注意以下步骤: 1、 关闭I和D,也就是设为0.加大P,使其产生振荡; 2、 减小P,找到临界振荡点; 3、加大I,使其达到目标值;重新上电看超调、振荡和稳定时间是否吻合要求; 4、 针对超调和振荡的情况适当的增加一些微分项; 5、 注意所有调试均应在最大争载的情况下调试,这样才能保证调试完的结果可以在全工作范围内均有效; |