一文读懂图像传感器的奥秘
图像传感器是利用光电器件的光电转换功能。将感光面上的光像转换为与光像成相应比例关系的电信号。与光敏二极管,光敏三极管等“点”光源的光敏元件相比,图像传感器是将其受光面上的光像,分成许多小单元,将其转换成可用的电信号的一种功能器件。图像传感器分为光导摄像管和固态图像传感器。与光导摄像管相比,固态图像传感器具有体积小、重量轻、集成度高、分辨率高、功耗低、寿命长、价格低等特点。因此在各个行业得到了广泛应用。 图像传感器是光电检测单元的阵列,并且包含一系列的处理电路。 图像传感器的结构主要有两种,其基本差异为像素单元的电荷读取方式不同。 CCD型:直接读取 CMOS型:转换后读取 二者的特点对比如下,CCD的最大特点在于精度高,因此在工业视觉上应用较多,不过随着CMOS工艺的不断进步,越来越多的CMOS型图像传感器被广泛应用也是必然趋势。 图像传感器检测电路的设计 光电检测电路的设计并不复杂,电路模型为: 通用的检测前端设计: 光伏模式:由于运算放大器A点电势和B点电势相等,因而光电二极管两端的电势差为零伏。这样最小化了暗电流的可能。 光导模式:二极管反向偏置,耗尽区增大,于是增大了带宽。 检测带宽为: 其中GBP为前级运放的增益带宽积。 该检测电路可以从DC和AC特性两方面考虑。 1、 DC直流特性 直流特性主要体现为测量误差,误差的来源一个为上述的暗电流参数,另外一个就是前级运放的失调参数。在实际应用中对于绝对误差精度要求不高,影响一般不大。 2、 AC交流特性 交流特性包括瞬态和交流信号的响应,二者也可以说是同一特征。以及噪声特性。 (1)补偿与稳定性 在上述的介绍中我们已经知道影响交流特性的主要因素即二极管的寄生电容,而对于检测电路而言还包括检测部分的寄生参数。 Ci为等效输入电容,增加的Cf产生的零点补偿Ci产生的极点。实际应用时也不用计算太多,注意二极管的寄生电容参数即可。但是在高增益的设计中,电路部分的寄生电容会限制带宽,需要特别注意。 (2)噪声特性 对于应用设计而言,光电探测器本身的噪声水平可以通过选型来评估。而对前端检测电路,涉及的噪声来源就包括的外界干扰,PCB设计问题,运放和其他器件噪声等。对于噪声的处理有几点: 限制带宽:通过电容Cf的作用限制高频噪声,这在低频检测时很有效,但是会影响瞬态响应的速度。 复合放大器降噪:反馈回路中增加放大器通过积分作用减小噪声。实际上应用很少,一般采用后级滤波设计。 对于图像传感器的应用大多数属于数字电路直接读取,但是也有一些输出模拟信号的应用,需要理解应用原理,严格按照时序采集。 设计与应用总结 光电探测的原理简单,但应用多样,在极微弱信号和高频检测应用设计上需要综合考虑的点还是非常多的。 1、 减小信号链路噪声 对于采集链路而言,无论是电源的滤波和去耦设计,还是器件布局,或者PCB设计都需要按照设计规范考虑,尽量减小设计带来的干扰。包括合适的器件选型等等。如下图对于板上漏电流的设计考虑,可增加保护环。 2、 减小外部干扰 外部的干扰包括静电,辐射等,这需要在整体布局上充分考虑,避开干扰源,设计滤波器。甚至可以考虑增加屏蔽盒,采用同轴线缆等方式。 3、 系统思考问题 在整体应用设计中尤其要注意系统思考问题,因为检测器是作用于立足某一应用场景的整机设备。无论是上述说的外部辐射干扰,还是结构的稳定性或密封性,以及常见的温湿度等物理因素,都会对最终结果造成恶劣影响。一个非常明显的例子就是对于一些需要低温控制的探测器,散热或者环境温度不稳定时,检测结果往往让人摸不着头脑,无所适从。因此,作为硬件工程师更需要具有系统性考虑问题和解决问题的能力,而不仅仅是局限于单板以内。 总之,无论是光还是电,都是我们要处理的Signal。 |