MOSFET栅极驱动电路的应用
1、驱动MOSFET 1.1、栅极驱动与基极驱动 常规的双极晶体管是电流驱动器件,而MOSFET 是电压驱动器件。 图 1.1 所示为双极晶体管。要在集电极中产生电流,必须在基极端子和发射极端子之间施加电流。图1.2 所示为 MOSFET,在栅极端子和源极端子之间施加电压时,MOSFET 在漏极中产生电流。 MOSFET 的栅极是一层二氧化硅。由于该栅极与源极隔离,向栅极端子施加直流电压理论上不会在栅极中产生电流(在栅极充电和放电的瞬态产生的电流除外)。实践中,栅极中会产生几纳安的微弱电流。当栅极端子和源极端子之间无电压时,由于漏源极阻抗极高,因此漏极中除泄漏电流之外无电流。
1.2. MOSFET的特点 MOSFET 有以下特点: a、由于MOSFET 是电压驱动器件,因此无直流电流流入栅极。 b、要开通MOSFET,必须对栅极施加高于额定栅极阈值电压Vth的电压。 c、处于稳态开启或关断状态时,MOSFET栅极驱动基本无功耗。 d、通过驱动器输出看到的 MOSFET栅源电容根据其内部状态而有所不同。 MOSFET 通常被用作频率范围从几kHz到几百 kHz 的开关器件。栅极驱动所需的功耗较低是MOSFET作为开关器件的优势。此外也提供专为低电压驱动设计的MOSFET。 1.2.1. 栅极电荷 可将MOSFET的栅极视为电容。图 1.3 所示为 MOSFET 中的不同电容。除非对栅极输入电容充电,否则MOSFET的栅极电压不会增大,而且在栅极电压达到栅极阈值电压Vth之前,MOSFET不会开通。MOSFET的栅极阈值电压Vth是在其源极和漏极区域之间产生传导通道所需的最小栅偏压。
考虑驱动电路和驱动电流时,MOSFET的栅极电荷 Qg 比其电容更加重要。图 1.4 所示为增加栅极电压所需的栅极电荷的参数定义。 1.2.2. 计算MOSFET栅极电荷 MOSFET开启期间,电流流到其栅极,对栅源电容和栅漏电容充电。图1.5显示了栅极电荷的测试电路。图1.6显示了对栅极端子施加恒定电流时获得的栅源电压随时间变化的曲线。由于栅电流恒定,可将时间乘以恒定栅电流IG,以栅极电荷Qg表示时间轴。(栅极电荷的计算公式是Qg=IG×t。)
1.2.3. 栅极充电机理 对MOSFET施加电压时,其栅极开始积累电荷。图1.7所示为栅极充电电路和栅极充电波形。将MOSFET连接到电感负载时,它会影响与MOSFET并联的二极管中的反向恢复电流以及MOSFET栅极电压。此处不作解释。
a、在t0-t1时间段内,栅极驱动电路通过栅极串联电阻器R对栅源电容Cgs和栅漏电容Cgd充电,直到栅极电压达到其阈值Vth。由于Cgs和Cgd是并联充电,因此满足以下公式。
b、在t1-t2期间,VGS超过Vth,导致漏极中产生电流,最终成为主电流。在此期间,继续对Cgs和Cg充电。栅极电压上升时,漏极电流增大。在 t2,栅极电压达到米勒电压,在公式(1)中用 VGS(pl)代替VGS(t2),可计算出VGS(pl).t2。在t0-t1期间,延迟时间t2和R(Cgs+Cgd)成正比。
c、在t2-t3期间,VGS(pl)电压处的VGS受米勒效应影响保持恒定。栅极电压保持恒定。在整个主栅电流流过MOSFET时,漏极电压在t3达到其导通电压(RDS(ON)×ID)。由于在此期间栅极电压保持恒定,因此驱动电流流向Cgd而非Cgs。在此期间Cgd(Qdg)中积累的电荷数等于流向栅电路的电流与电压下降时间(t3-t2)的乘积:
d、在t3-t4期间,向栅极充电使其达到过饱和状态。对Cgs和Cgd充电,直到栅极电压(VGS)达到栅极供电电压。由于开通瞬态已经消失,在此期间MOSFET不会出现开关损耗。 1.3.栅极驱动功率 MOSFET栅极驱动电路消耗的功率随着其频率而成比例地增大。本节介绍了栅极驱动电路(图1.8中所示)的功耗。
在图1.8中,通过栅极电阻器R1在MOSFET的栅极端子和源极端子之间施加了栅极脉冲电压 VG。假设VGS从0V升高至VG(图1.9为的10V)。VG足以开通MOSFET。MOSFET一开始处于关断状态,在VGS从0V升高至VG时开通。在此瞬态开关期间流过的栅电流计算如下:
从驱动电源供应的能量减去在栅极中积累的能量可以得出栅极电阻器消耗的能量。 关断期间,在栅极中积累的能量就是栅极电阻器消耗的能量。 每个开关事件消耗的能量E等于驱动电路供应的能量。将E乘以开关频率fsw,可计算出栅极驱动电路PG的平均功耗:
栅极驱动电路的平均功耗Pg也可以用输入电容表示为:
但这样计算得出的 PG 值和实际功率损耗有很大出入。这是因为CISS包括具有米勒电容的栅漏电容 CGD,因此是VDS的函数,且栅源电容CGS是VGS的函数。
2、MOSFET栅极驱动电路示例 MOSFET 驱动电路的基本要求包括能够向栅极施加明显高于Vth的电压,并有为输入电容完全充电的驱动能力。本节说明了N通道MOSFET的驱动电路示例。 2.1、基本驱动电路 图 2.1 所示为MOSFET基本驱动电路。在实践中,设计驱动电路时必须考虑要驱动的MOSFET 电容及其使用条件。
2.2、逻辑驱动 人们对用于开关应用(负载开关)的MOSFET的需求越来越多,它仅在运行时为电路提供导电路径,从而降低了电子器件的功耗。目前在很多应用中通过逻辑电路或微控制器直接驱动MOSFET。 图2.2所示为用于开通和关断功率继电器的电路示例。由于负载开关的开通和关断时间可能慢至几秒,可使用小电流驱动MOSFET栅极。
3、MOSFET 驱动电路的注意事项 3.1、栅极电压 VGS 条件的注意事项 VGS对于MOSFET栅极驱动非常重要。MOSFET在线性区(即电压低于夹断电压)中运行时,其导通电阻较低。因此对于开关应用,您可以在低VDS区中使用MOSFET来降低导通电阻。
当MOSFET的栅极电压VGS超过其阈值电压Vth时(如图4.2所示),MOSFET开通。因此,VGS必须明显高于Vth。 VGS 越高,RDS(ON)值就越低。 温度越高,RDS(ON)值也就越高(图 4.3)。 为了减少损耗,必须增大 VGS 从而最大限度减小器件在当前使用的电流水平下的电阻(图 4.4)。相反,高 VGS 值会增大高频开关情况下驱动损耗对总损耗的比率。 因此必须选择最佳的 MOSFET 和栅极驱动电压。对东芝的众多功率 MOSFET 而言,通常建议在 VGS为10V驱动其栅极。东芝的产品系列中还包括用于在VGS为4.5V时驱动栅极的功率MOSFET。选择最适合您系统要求的功率MOSFET。
3.2、栅极电压、峰值电流和驱动损耗 如第1.3节“栅极驱动功率”中所述,在为 MOSFET 设计驱动电路时,对栅极输入电容充电的驱动损耗和电流非常重要。
增大栅极电压会降低 RDS(ON),从而降低稳态损耗。但由于Q=CV,因此增大栅极电压会增加 Qg,从而增大栅电流和驱动损耗。MOSFET 在轻负荷应用中以高频开关时,栅极驱动损耗会显著影响其总损耗。在设计驱动电路时应注意。 3.3.、栅极电阻器和开关特性 一般来说,MOSFET 的栅极端子上连接一个电阻器。该栅极电阻器的用途包括抑制尖峰电流并减少输出振铃。较大的栅极电阻器会降低MOSFET的开关速度,从而导致功率损耗增大,性能降低以及出现潜在的发热问题。相反,较小的栅极电阻器会提高MOSFET的开关速度,易引发电压尖峰和振荡,从而造成器件故障和损坏。因此必须通过调节栅极电阻器值来优化 MOSFET 开关速度。
我们使用模拟法考虑图 4.5 中所示电路的 MOSFET 开关波形。为了评估实际电路,将在模拟电路中插入线路杂散电感。输出振铃的幅度和持续时间取决于杂散电感。
我们模拟获取图4.5中所示电路的关断波形,将栅极电阻器R3更改为1、10和50。图4.6显示了模拟结果。如上所述,减小栅极电阻器值会增大MOSFET的开关速度,而代价是增大了振铃电压。相反,增大栅极电阻器值会减小振铃电压,同时降低MOSFET的开关速度,从而增大其开关损耗。这是由于栅极电阻器值和栅极电压限制了MOSFET的栅极充电电流。
3.4、栅极驱动的注意事项 3.4.1、栅极-发射极尖峰电压防护 在MOSFET的栅极和源极之间添加一个外部齐纳二极管,可以有效防止发生静电放电和栅极尖峰电压。但要注意,齐纳二极管的电容可能有轻微的不良影响。
3.4.2、最佳的栅极电阻器 如第 3.3 节“栅极电阻器和开关特性”中所述,开关速度根据栅极电阻器值而有所不同。增大栅极电阻器值会降低MOSFET的开关速度,并增大其开关损耗。减小栅极电阻器值会增大MOSFET的开关速度,但由于线路杂散电感和其它因素的影响,可能在其漏极端子和源极端子之间产生了尖峰电压。 因此,必须选择最佳的栅极电阻器。有时会使用不同的栅极电阻器来开通和关断MOSFET。图 4.8显示了使用不同的栅极电阻器进行开通和关断的示例。
3.4.3、栅极故障预防 MOSFET 的一大问题在于其漏栅电容会导致出现寄生开通(自开通)现象。关断后,MOSFET的源极和漏极之间形成陡峭的dv/dt。产生的电流经由漏栅电容流到栅极。导致栅极电阻器中发生的电压降提高栅极电压。该电流计算如下: iDG=Cgd·dVDS/dt 图 4.9 显示了电流通路。
如果 dv/dt 的斜率极为陡峭,则根据栅源电容与栅漏电容的比率为MOSFET的栅极施加电压。如果出现这种情况,可能会发生自开通。 如果在二极管反向恢复期间对处于关断状态的MOSFET 施加快速变化的电压,也可能发生自开通。 有三种方法可以防止出现自开通现象: (1)、在栅极和源极之间添加一个电容器 在栅极和源极之间插入的电容器会吸收因dv/dt 产生的漏栅电流。该电路如图4.10中所示。由于栅源电容器与Cgs在MOSFET内部并联连接,因此栅极电荷会增加。如果栅极电压固定,您可以通过改变栅极电阻器值来保持MOSFET的开关速度不变,但这样会增大消耗的驱动功率。
(2)米勒箝位电路 米勒箝位电路利用开关器件使MOSFET的栅极与源极之间的通路发生短路。通过在相关MOSFET的栅极和源极之间添加另一个MOSFET来实现短路。在图4.11中,如果电压降至预定义电压以下,低于米勒电压,则通过比较器提供逻辑高,开通栅极和源极之间的 MOSFET。而这样又会使输出MOSFET的栅源通路发生短路,并抑制通过反馈电容器 Crss 和栅极电阻器的电流导致的栅极电压升高。
(3)可将关断栅极电压驱动到负值,避免其超过 Vth。但这种方法需要负电源。 我们使用图4.12中所示的电路模拟自开通现象。自开通由iDG(dv/dt 电流)和栅极电阻造成,会导致发生误开通。
在反向恢复模式中,如果Q2在电感负载电流通过Q1的二极管回流时开通,电感电流会流过Q2,导致相关的二极管关断。我们研究了对关断状态的 MOSFET 施加高 dv/dt 电压时会发生的情况。为促使发生自开通现象,图 4.12 中只改变了与 Q1 相关的栅极电阻器 R4。 图 4.13 显示了无自开通现象的波形,图 4.14 显示了有自开通现象的波形。
接下来,如图4.15中所示,我们为图4.12中所示电路在MOSFET Q1的栅极端子和源极端子之间添加了一个电容器。该电容器的用途是吸收栅电流(Cgd·dVDS/dt),以便降低栅极电阻器产生的栅极电压,从而降低自开通电压。
图4.16显示了改进后的波形。由于栅源电容器的添加改变了MOSFET开关时间,应一并调整其电容和栅极电阻。
审核编辑:汤梓红 |