1600万色LED如何驱动?

时间:2021-05-23来源:佚名

本文将首先阐述LED的基础知识,然后讨论多色LED的优势,之后介绍哪些是合适的多色LED解决方案,最后说明如何将LED连接到微控制器,以产生多达1600万种不同的颜色。

LED的结构与原理

在设计带LED的电路时,务必记住这些器件不是白炽灯泡,而是恰好能发光的半导体器件(二极管)。作为二极管,它们通常只允许电流主要流向一个方向(二极管并不理想,因此在反向偏置时会产生少量电流)。

普通LED的发光部分是位于组件中心的简单半导体二极管,由单个p-n结构成(图1)。电流从连接到P型硅的LED阳极流向连接到N型硅的LED阴极。在普通二极管中,p-n结通常是锗 (Ge) 或硅 (Si)。然而,对于LED而言,这个结通常是透明的磷砷化镓 (GaAsP) 或磷化镓 (GaP) 半导体材料。

1600万色LED如何驱动?

图1:LED组件含有半导体p-n结芯片,可使电流从阳极流到阴极。带透镜的透明外壳可以让用户轻松看到产生的发射光。(图片来源:维基百科)

利用透明的GaAsP或GaP,施加在p-n结上的正向电压会从半导体释放出光子。p-n结安装在反射镜腔上,而该镜腔可将光子聚集到LED透镜。LED的透镜和本体由透明环氧树脂组成,而树脂可选择性地进行着色,以匹配发射光的颜色。

反射镜腔位于称为铁砧的引线框上,阴极通过接合线连接到称为极柱的引线框上。铁砧和极柱的形状可使它们与LED环氧树脂本体形成牢固连接,从而无法将阳极或阴极引脚从LED环氧树脂本体上拉出,造成LED损坏。

单色LED

LED有多种颜色可供选择,包括红色、绿色、黄色、琥珀色、青色、橙色、粉色、紫色以及最近出现的白色和蓝色。单色LED配备的半导体芯片由可产生所需光线波长的材料组成,并且LED环氧树脂壳体组件通常具有相同的颜色。虽然不需要使透镜具有与发射光相同的颜色,但重要的是,要容易识别LED元件的颜色,防止与其他LED混淆。

多色LED

对于某些空间、成本和功耗受限的系统而言,最好使用一个能发出多种颜色的LED。通常情况下,这种多色LED在一个透明环氧树脂外壳内部配备三个LED,分别是红色、绿色和蓝色 (RGB)。Adafruit Industries的2739 RGB LED就是一个很好的例子(图2)。该LED专为多色指示灯而设计,配有一个宽2.5mm、高5 mm的矩形透镜发光表面,以及四根可在PC板上进行通孔安装的径向引线。

1600万色LED如何驱动?

图2:Adafruit的2739 RGB LED采用宽2.5mm、高5mm的透明环氧树脂矩形透镜,并带有四根径向引线,用于在PC板上进行通孔安装。(图片来源:Adafruit Industries)

通常情况下,三个内部LED中的任何一个均可以单独使用,也可与其他LED结合使用,以产生不同的颜色。

多色RGB LED通常有三种引脚布局:

1)所有LED共用一个阳极,每个LED有一个阴极,总共四个引脚

2)所有LED共用一个阴极,每个LED有一个阳极,总共四个引脚

3)每个阳极和阴极都分配引脚,总共六个引脚

使用多色LED进行设计

Adafruit的2739 RGB LED具有一个共阳极,红色、绿色和蓝色LED的每个阴极都分配引脚,总共四个引脚(图 3)。共阳极连接到正极电源,而每个红色、绿色和蓝色LED通过接地来接通。

1600万色LED如何驱动?

图3:Adafruit的2739 RGB LED具有一个共阳极,而红色、绿色和蓝色LED分别配有一个单独的阴极。(图片来源:Adafruit Industries)

如何生成多种颜色

如果某种应用只需要显示三种状态中的一种,那么使用2739 RGB LED的最简单方法是一次打开一个LED,用户可以选择红色、绿色或蓝色中的一种。

对于多种颜色,设计人员可以简单地将两种颜色组合在一起,提供以下六种颜色选项:

红色

绿色

蓝色

黄色(红色 + 绿色)

青色(绿色 + 蓝色)

洋红色(红色 + 蓝色)

为了编制清晰的项目文档,显示的颜色应该清晰易辨,并且易于口头确认。例如,具有全电流的绿色LED可以在LED规格书中记录为“绿黄色”。然而,当LED亮起时,大多数消费者和开发人员在被问及时,都会将颜色识别为“绿色”。无论颜色的实际名称如何,用户都应该能够通过视觉和标签轻松区分出不同的颜色。很少有人能够轻易地识别出“绿色”和“绿黄色”之间的区别,如果这两种颜色并排呈现,则可能将绿黄色识别为“绿色”,将绿色识别为“深绿色”。

对于更复杂的应用,可以按不同的强度组合RGB,从而产生多达1600万种颜色。实现这一目的的可靠方法是:将脉冲宽度调制 (PWM) 信号应用于每个LED,其中占空比与强度相对应。人眼可以识别出200赫兹 (Hz) 或更慢的闪烁频率,因此,为了避免闪烁,应使用1000Hz或更快的PWM频率。

颜色可通过RGB色码轻松选择。这基于RGB加色模型,其中红光、绿光和蓝光在强度上各不相同,组合在一起几乎可以重新生成任何颜色。该模型适用于光线,是电视和显示屏中色彩再现的依据,还可用于呈现网页上的颜色。

RGB色码的简写用 (R,G,B) 表示,其中R、G和B是红色、绿色和蓝色强度的十进制值,范围介于0到255之间。例如,蓝色的十进制RGB色码为 (0,0,255),紫色为 (128,0,128),银色为 (192,192,192)。在确定每种颜色的PWM占空比时,需将这些值除以255,因此蓝色的占空比为 (0,0,100%),紫色的占空比为 (50%,0,50%),银色的占空比为 (75%,75%,75%)。

从理论上讲,白光由 (255,255,255) 表示,并且可通过同时打开全强度的红色、绿色和蓝色LED来生成。然而,在实践中,通过该方法产生的颜色通常是带有偏蓝色调的白色。出现这种色调是因为,生成的LED颜色与理想的红色、绿色和蓝色的精确波长不完全匹配。

微控制器很容易生成所需的PWM信号。Microchip Technology的ATSAMC21J18A就是一个合适的例子(图4)。该微控制器是一款用于物联网端点的低功耗器件,是该公司SAM C21微控制器系列产品之一。它配有48MHz Arm® Cortex®-M0+内核,支持5伏I/O电压。

1600万色LED如何驱动?

图4:ATSAMC21J18A微控制器具有定时器/计数器单元,能够自动生成三个同步PWM信号。(图片来源:Microchip Technology)

为了驱动LED,ATSAMC21J18A配有定时器/计数器单元,能够自动生成三个同步PWM信号。SAM C21系列产品配有高电流阱选件,可使连接各电流阱的四个I/O引脚的最大电流为20毫安 (mA)。

使用LED时,选择正确的串联电阻器来限制电流非常重要。电阻值太小的电阻器会破坏LED,而电阻值过高的电阻器会导致光线昏暗或无光。串联电阻器的值由每个LED的正向电压和所需的电流决定。

LED是电流控制的半导体。此外,值得注意的是,由于材料的物理特性,LED的工作电压会随着发射光波长的减小而增加,这是使用多个LED时要考虑的重要因素。

当Adafruit的2739 RGB LED正向电流为20 mA时,Adafruit 图表中规定的LED典型正向电压为2伏(红色)和3.2伏(绿和蓝色)。

如果共阳极连接到5伏电压,那么LED和I/O引脚之间的电阻值由以下等式确定:

1600万色LED如何驱动?

其中:

VDD = 5伏

VOL = ATSAMC21J18A 的输出低压 = 0.1 x VDD = 0.5伏

VF = 正向电压(典型值)

I = 正向电流,单位:安培

R = 电阻值,单位:欧姆 (Ω)

在I = 20mA的情况下使用该公式,结果是:RRED (VF = 2 V) = 125Ω,RGREEN = RBLUE (VF = 3.2V) = 65Ω。

如果计算出的电阻不能作为标准电阻值,开发人员可以选择下一个较低值,或者下一个较高值(首选)。如果选择较低值,则必须注意,不得超过该LED的最大正向电压或ATSAMC21J18A I/O端口的最大电流灌入能力。虽然在超过这些最大值时LED仍然可以工作,但可能会降低LED的使用寿命,也可能随着时间的推移,降低I/O端口的性能或损坏该端口。或者,如果应用仍能接受较暗光线,则可以降低正向电流。例如,当正向电流为15mA时,Adafruit的2739 RGB LED指定正向电压会降至1.9伏(红色)和3.1伏(绿色和蓝色),这样会导致电阻值RRED = 173.3Ω,RGREEN = RBLUE = 93.3Ω。

由于ATSAMC21J18A可通过控制接地连接来控制LED,当I/O端口为逻辑低电平时,单个LED亮起;当I/O端口为逻辑高电平时,单个LED熄灭。因此,必须倒置计算出的RGB色码占空比。例如,如果颜色需要25%的占空比,则PWM必须能产生75%的占空比,才能使LED在25%的周期时间内工作。此外,如果LED必须在上电时熄灭,则微控制器启动代码必须能使三个引脚处于逻辑高电平。

ATSAMC21J18A配备256Kb闪存、32Kb RAM和各种模拟外设。该微控制器还配有六个串行通信模块 (SERCOM),每个模块都可以作为USART、SPI、LIN从器件或I2C接口

智能RGB LED设计

使用RGB LED生成多种颜色的另一种方法是对其进行编程。智能LED是一个术语,用来描述这种带有可编程串行接口的多色LED。American Bright Optoelectronics的BL-HBGR32L-3-TRB-8就是一个很好的例子。它是一款5mm方形RGB LED,可以使用800千赫 (kHz) I2C接口进行编程,从而产生任何颜色(图5)。

1600万色LED如何驱动?

图5: American Bright的BL-HBGR32L-3-TRB-8是一款尺寸为5mm的方形六引脚数字RGB LED,配有I2C直通引脚布局,可使多个器件以菊花链方式连接在同一I2C接口上。(图片来源: American Bright Optoelectronics Corp.)

I2C接口不仅可以节省板空间,而且可以简化微控制器代码,这种便利性极大简化了设计。ATSAMC21J18A上的一个SERCOM端口可配置为I2C串行接口,以便轻松连接到BL-HBGR32L-3-TRB-8。参考图5中的引脚布局,来自ATSAMC21J18A微控制器的I2C数据信号连接到引脚1数据输入信号,I2C时钟连接到引脚2时钟输入。

在对BL-HBGR32L-3-TRB-8 LED的颜色进行编程时,需要发送四个代表全局亮度设置和RGB色码的字节,作为一个32位字。这款智能LED在引脚6上配有数据输出直通,在引脚5上配有I2C时钟直通,这样可使多个LED能够以菊花链方式连接在一起,以便每个LED可以显示不同的颜色。

总结

了解多色RGB LED的驱动方式之后,不仅可以节省空间、成本和功耗,还可以增强终端系统、设备、状态指示灯或照明系统的美观性及用户界面。开发人员既可以选择能对每个LED进行完全控制的标准RGB LED,也可以选择能对颜色进行编程控制的智能LED。此外,当涉及到通常用于产生PWM控制信号的微控制器时,目前有许多低功耗、低成本选项可供选择。

    相关阅读

    中国台湾研究员:开发了新的近红外发射FAPbI3量子点,实现15.4%的钙钛矿基NIR

    近年来,钙钛矿型量子点(QDs)和基于量子点的发光二极管(QLEDs)的性能有了很大的提高,绿色和红色发光的电致发光(EL)效率超过20%。然而,钙钛矿近红外(NIR)QLED的发展已经停...
    2022-07-25
    中国台湾研究员:开发了新的近红外发射FAPbI3量子点,实现15.4%的钙钛矿基NIR

    合肥工大蒋阳课题组在量子点电致发光器件(QLED)领域取得新进展

    近日,合肥工业大学材料科学与工程学院蒋阳教授课题组在钙钛矿量子点电致发光器件(QLED)领域取得了记录效率的突破,相关研究成果“Enriched-bromine surface state for stable sky-blue spectr...
    2022-08-23
    合肥工大蒋阳课题组在量子点电致发光器件(QLED)领域取得新进展

    加拿大研究人员:宽禁带钙钛矿量子点及在天蓝LED的应用

    钙钛矿基质在量子点(QD)上的外延生长使高效红光发光二极管(LED)得以出现,因为它将高效电荷传输与强大的表面钝化结合起来。然而,到目前为止,在天蓝LED的情况下,在基质异质...
    2022-07-05
    加拿大研究人员:宽禁带钙钛矿量子点及在天蓝LED的应用

    至芯半导体成功研制日盲深紫外器件

    至芯半导体成功研发出AlGaN的高灵敏日盲型深紫外光的光电探测器,相关成果已申请发明专利(申请号: 202210045910.6),这一成果为实现高性能日盲深紫外光电探测器和图像传感提供了一...
    2022-08-23
    至芯半导体成功研制日盲深紫外器件

    南方科技大学孙小卫教授课题组AOM:溴离子钝化高效蓝光InP量子点材料与器件研

    半导体照明网获悉:近日,南方科技大学孙小卫课题组通过低温成核、高温包覆的方法成功制备了基于溴离子钝化的高效蓝光InP量子点材料,同时通过配体工程,将长链的十二硫醇配体...
    2022-06-15
    南方科技大学孙小卫教授课题组AOM:溴离子钝化高效蓝光InP量子点材料与器件研

    浙大金一政团队和华南理工大学黄飞/应磊团队合作在量子点发光二极管研究方

    近日,浙江大学金一政课题组、王林军课题组与华南理工大学黄飞 / 应磊团队合作,在高性能蓝、绿光量子点发光二极管( QLED )的开发上取得进展。研究者揭示了无机量子点 / 有机高...
    2022-05-23
    浙大金一政团队和华南理工大学黄飞/应磊团队合作在量子点发光二极管研究方

    厦大张荣教授团队与台交大郭浩中教授团队合作:Micro LED色转换研究领新进展

    随着人工智能、图像识别和5G通信技术的快速发展,增强现实(AR)和虚拟现实(VR)技术正以惊人的速度发展。新冠疫情背景下,远程办公和远程消费交互日益增加,市场再次将注意力转向...
    2022-07-27
    厦大张荣教授团队与台交大郭浩中教授团队合作:Micro LED色转换研究领新进展

    福州大学和中科院宁波材料所专家:为实现高性能超高分辨率QLEDs提供一条途径

    随着对更高像素的需求不断增长,下一代显示器对分辨率和色域有着挑战性的要求。为了满足这一需求,量子点发光二极管(QLEDs)薄膜技术实现了每英寸9072–25400像素的超高像素分辨率...
    2022-07-06
    福州大学和中科院宁波材料所专家:为实现高性能超高分辨率QLEDs提供一条途径

    网站栏目