技术荟 | 硅基生长氮化镓器件的新方法?

时间:2021-05-23来源:佚名
  名词解析

  什么是电流崩塌效应?

  电流崩塌效应是GaN器件漏极电压超过一定值时, 随着漏极电压的增加,电流开始下降,不能达到理想值的效应。

  导读

  近日,美国研究人员发现了在200mm绝缘硅基衬底(SOI)上生长氮化镓(GaN)高电子迁移率晶体管(HEMT)的新方法,该研究团队的主要成员来自于IBM T. J. Watson 研发中心、麻省理工大学(MIT)、Veeco公司以及哥伦比亚大学。他们希望在未来能够将此GaN异质结构生长技术运用到互补金属氧化物半导体晶体管(CMOS)中。

  GaN的材料优势

  硅材料CMOS器件由于硅本身的特性,并不适合用于高压大功率电子设备中,比如光伏逆变器、电动汽车充电桩和直流转换。然而,GaN因其拥有较高的禁带,能够提供更高功率以及更好的性能表现。因此,采用GaN材料的CMOS、HEMT器件能够更好的胜任这些应用。

  硅衬底的结构及生长过程

  如图1所示,对于新的器件结构,研究人员首先采用750μm的硅(111)作为衬底,然后在其上生长145nm氧化层(SiO2)以及80nm的硅(100)层。通常,晶向为(111)的硅材料主要用于生长GaN,而硅(100)主要用于CMOS器件的应用。

  其次,研究人员将硅(100)表面进行表面氧化,在表面形成40nm的氧化层(图1(a))。这样的结构更适合生长14nm工艺的CMOS。

  然后研究人员在硅(111)表面蚀刻面积为200μmx200μm的区域作为GaN生长区域(图1(b))。

  图1 MOCVD生长的硅(111)以及硅(100)横截面:(a)CVD-SiO2层生长,(b)蚀刻硅(111)表面,(c)Si3N4隔离层,(d)干法蚀刻移除部分Si3N4,(e)生长AlGaN/GaN HEMT,(f)通过化学机械抛光去除CVD-SiO2层

技术荟 | 硅基生长氮化镓器件的新方法?

  如图1(c),研究人员使用氮化硅(Si3N4)在(b)的基础上生长隔离层,这层结构能够有效的隔离硅和镓元素之间的互相掺杂问题。

  HEMT器件的生长过程

  如图1(e),GaN与AlGaN材料同样采用了MOCVD工艺:(1)130nm 1050°C AlN层生长,(2)1.5μm 1035°C GaN缓冲层和沟道层生长,(3)1nm AlN 垫层、20nmAl0.25Ga0.75N阻挡层以及3nmGaN保护层生长。然后再在其表面生长3μm宽的栅极以及源极和漏极。

技术荟 | 硅基生长氮化镓器件的新方法?

  器件特性

  如图2,根据不同的蚀刻面积尺寸,电子迁移率也会随之变化。但是漏极电流的最大值却一直保持大致相同的水平(图中红色曲线)。研究人员表示,电子迁移率随着面积尺寸的减小而降低,是主要因为在较小面积的情况下,材料具有更强的应力松弛能力。

  同时,研究人员发现,电流崩塌效应在最大200μmx200μm的面积尺寸上的概率有所增加(小于25%),但是这个效应在较小面积的器件中只有不到6%。例如,通过实验测量,一个100μmx100μm面积尺寸的器件,其电流崩塌的概率只有不到2%。

  结论

  研究人员认为,在这种图案化GaN器件中,电流崩塌似乎是与应力松弛有关,在较小的面积里,概率发生更低。尽管目前对于这种现象并没有准确的说明,但是研究人员相信缺陷和应力变化对于图案化GaN器件的电流崩塌存在重要的影响因素。

  参考文献

  K. T. Lee et al., "GaN Devices on a 200 mm Si Platform Targeting Heterogeneous Integration," in IEEE Electron Device Letters, vol. 38, no. 8, pp. 1094-1096, Aug. 2017.

  doi: 10.1109/LED.2017.2720688

    相关阅读

    中国台湾研究员:开发了新的近红外发射FAPbI3量子点,实现15.4%的钙钛矿基NIR

    近年来,钙钛矿型量子点(QDs)和基于量子点的发光二极管(QLEDs)的性能有了很大的提高,绿色和红色发光的电致发光(EL)效率超过20%。然而,钙钛矿近红外(NIR)QLED的发展已经停...
    2022-07-25
    中国台湾研究员:开发了新的近红外发射FAPbI3量子点,实现15.4%的钙钛矿基NIR

    合肥工大蒋阳课题组在量子点电致发光器件(QLED)领域取得新进展

    近日,合肥工业大学材料科学与工程学院蒋阳教授课题组在钙钛矿量子点电致发光器件(QLED)领域取得了记录效率的突破,相关研究成果“Enriched-bromine surface state for stable sky-blue spectr...
    2022-08-23
    合肥工大蒋阳课题组在量子点电致发光器件(QLED)领域取得新进展

    至芯半导体成功研制日盲深紫外器件

    至芯半导体成功研发出AlGaN的高灵敏日盲型深紫外光的光电探测器,相关成果已申请发明专利(申请号: 202210045910.6),这一成果为实现高性能日盲深紫外光电探测器和图像传感提供了一...
    2022-08-23
    至芯半导体成功研制日盲深紫外器件

    加拿大研究人员:宽禁带钙钛矿量子点及在天蓝LED的应用

    钙钛矿基质在量子点(QD)上的外延生长使高效红光发光二极管(LED)得以出现,因为它将高效电荷传输与强大的表面钝化结合起来。然而,到目前为止,在天蓝LED的情况下,在基质异质...
    2022-07-05
    加拿大研究人员:宽禁带钙钛矿量子点及在天蓝LED的应用

    南方科技大学孙小卫教授课题组AOM:溴离子钝化高效蓝光InP量子点材料与器件研

    半导体照明网获悉:近日,南方科技大学孙小卫课题组通过低温成核、高温包覆的方法成功制备了基于溴离子钝化的高效蓝光InP量子点材料,同时通过配体工程,将长链的十二硫醇配体...
    2022-06-15
    南方科技大学孙小卫教授课题组AOM:溴离子钝化高效蓝光InP量子点材料与器件研

    浙大金一政团队和华南理工大学黄飞/应磊团队合作在量子点发光二极管研究方

    近日,浙江大学金一政课题组、王林军课题组与华南理工大学黄飞 / 应磊团队合作,在高性能蓝、绿光量子点发光二极管( QLED )的开发上取得进展。研究者揭示了无机量子点 / 有机高...
    2022-05-23
    浙大金一政团队和华南理工大学黄飞/应磊团队合作在量子点发光二极管研究方

    厦大张荣教授团队与台交大郭浩中教授团队合作:Micro LED色转换研究领新进展

    随着人工智能、图像识别和5G通信技术的快速发展,增强现实(AR)和虚拟现实(VR)技术正以惊人的速度发展。新冠疫情背景下,远程办公和远程消费交互日益增加,市场再次将注意力转向...
    2022-07-27
    厦大张荣教授团队与台交大郭浩中教授团队合作:Micro LED色转换研究领新进展

    福州大学和中科院宁波材料所专家:为实现高性能超高分辨率QLEDs提供一条途径

    随着对更高像素的需求不断增长,下一代显示器对分辨率和色域有着挑战性的要求。为了满足这一需求,量子点发光二极管(QLEDs)薄膜技术实现了每英寸9072–25400像素的超高像素分辨率...
    2022-07-06
    福州大学和中科院宁波材料所专家:为实现高性能超高分辨率QLEDs提供一条途径

    网站栏目