EMI测试的应用及相关的测试标准

时间:2021-05-23来源:佚名

最近有一则中消协发布的公告关于电脑辐射骚扰超标不合格,容易影响到电网内设备最后到导致电脑死机。其主要原因是电脑电源端子辐射骚扰超出了国家标准规定的限值, 而这种骚扰可能干扰其它电子设备正常工作,特别是高灵敏度电子设备。随着科学技术的发展,越来越多的数字化,高速化的电气和电子设备在社会各个领域广泛使用,在推动社会发展的同时,伴随着电气和电子设备应用而产生的电磁干扰也给社会带来了电磁污染问题。而电磁污染与水污染,空气污染被称为当今社会的三大污染源。 随着电磁干扰问题的日益突出,国际无线电干扰特别委员会(CISPR)相应出台了CISPR -16, CISPR-15,欧洲标准委员会出台了EN55015和EN55022等标准。这些措施和标准旨在规范点电子产品的电磁干扰限制和其它规范,以减少电磁干扰带来的社会问题。

电磁干扰EMI(Electromagnetic Interference),有传导干扰和辐射干扰两种。传导干扰是指通过导电介质把一个电网络上的信号耦合(干扰)到另一个电网络。辐射干扰是指干扰源通过空间把其信号耦合(干扰)到另一个电网络。在高速PCB及系统设计中,高频信号线、集成电路的引脚、各类接插件等都可能成为具有天线特性的辐射干扰源,能发射电磁波并影响其他系统或本系统内其他子系统的正常工作。众所周知,EMC的测试目标是电子电器设备,而照明设备作为其中重要的一块,自然也有相应的约束。如美国的FCC认证,欧盟的CE认证等都对LED照明设备提出了相关的测试项目。当谈论到电磁干扰时,一般来讲有两种干扰源;一种是传导干扰,主要是电子设备产生的干扰信号通过导电介质或公共电源线互相产生干扰,LED灯具的FCC认证传导干扰扫瞄测试频率从0.15MHz开始至30MHz结束, CE认证中的传导干扰扫瞄测试频率从9KHz开始至30MHz结束。 另外一种干扰是辐射干扰,主要是指电子设备产生的干扰信号通过空间耦合把干扰信号传给另一个电网络或电子设备,LED灯具的FCC认证空间辐射干扰扫瞄测试频率从30MHz开始至1GHz结束,CE认证中的空间辐射干扰扫瞄测试频率从30KHz开始至300MHz结束。

在照明行业中,在测试9KHz-30MHz波段的EMI中有两种方法,一种是采用Antenna(天线)和EMI接收机,其依据标准是CISPR15,EN55015,GB17743。对于照明灯具可能产生的低频磁场设备,需要采用CISPR16-1-4规定的三环天线测量其低频磁场辐射骚扰。主要是由三环天线和EMI接收机进行测试,测试时需在屏蔽室室内进行。注:三环天线将X方向,Y方向和Z方向低频磁场分量转化为RF信号,并通过同轴开关三个通道输送到EMI接收机进行测量;另外一种是采用LISN测试方法,测试时需要由EMI接收机 人工电源网络 LISN和测试软件进行。传导骚扰测试系统用于测量灯和灯具照明设备在正常工作状态下电源端口产生的骚扰,LISN实现RF信号的隔离,采样,阻抗匹配,并为EUT提供电通道,EMI接收机对RF信号进行测量,并最终由EMI测试软件进行分析,处理和判限。测试时需在屏蔽室进行。

与此同时,在9KHz-300MHz波段的EMI测试中采用的是CDN法。在CISPR15,EN55015和GB17743标准中还提供另外一种照明设备的辐射电场骚扰测试方法,即CDN共模端子电压法。采用CDN法,主要包括EMI接收机,CDN和衰减器。测试时可以在屏蔽室内进行。

对于EMI的测试,国际无线电干扰特别委员会(CISPR)出台了CISPR-16 无线电干扰及抗干扰测量器具规范,而对于照明行业,国际无线电干扰特别委员会还提出了CISPR-15 电子照明及相关设备无线电干扰特性限制及测量方法,并且各国也根据本国情况出台了各类的EMI照明检测规范,如欧盟出来的EN55015-2007,中国出台的GB17743-1999等。对于欧盟国家来说,EN55015标准(引用CISPR-15)适用于灯具频率超过100Hz传统照明设备,如白炽灯,荧光灯,自整流节能灯等。通常此类设备频率不超过30MHz, 相应的辐射干扰限值表1。但是对于新兴的LED照明行业,通常频率都超过30MHz,在CE认证中明确提出扫描频率是从30MHz到300MHz.

根据相关基础标准如CISPR16,力汕研发生产了两款EMI测试设备,而针对传统及新型照明行业标准,两款设备的扫描频率各不同, KH3962 EMI扫描频率为9KHz~300MHz,适合LED及传统照明设备的检测; KH3961 EMI扫描频率为9KHz~30MHz则主要适合传统照明设备的检测。而判定被测物是否符合标准,我们引用了峰值,准峰值和平均值三个值来判定,考虑到不同标准的差异,软件可直接调用GB17743、FCC、EN55015、GB4343等判定标准。

    相关阅读

    中国台湾研究员:开发了新的近红外发射FAPbI3量子点,实现15.4%的钙钛矿基NIR

    近年来,钙钛矿型量子点(QDs)和基于量子点的发光二极管(QLEDs)的性能有了很大的提高,绿色和红色发光的电致发光(EL)效率超过20%。然而,钙钛矿近红外(NIR)QLED的发展已经停...
    2022-07-25
    中国台湾研究员:开发了新的近红外发射FAPbI3量子点,实现15.4%的钙钛矿基NIR

    合肥工大蒋阳课题组在量子点电致发光器件(QLED)领域取得新进展

    近日,合肥工业大学材料科学与工程学院蒋阳教授课题组在钙钛矿量子点电致发光器件(QLED)领域取得了记录效率的突破,相关研究成果“Enriched-bromine surface state for stable sky-blue spectr...
    2022-08-23
    合肥工大蒋阳课题组在量子点电致发光器件(QLED)领域取得新进展

    至芯半导体成功研制日盲深紫外器件

    至芯半导体成功研发出AlGaN的高灵敏日盲型深紫外光的光电探测器,相关成果已申请发明专利(申请号: 202210045910.6),这一成果为实现高性能日盲深紫外光电探测器和图像传感提供了一...
    2022-08-23
    至芯半导体成功研制日盲深紫外器件

    加拿大研究人员:宽禁带钙钛矿量子点及在天蓝LED的应用

    钙钛矿基质在量子点(QD)上的外延生长使高效红光发光二极管(LED)得以出现,因为它将高效电荷传输与强大的表面钝化结合起来。然而,到目前为止,在天蓝LED的情况下,在基质异质...
    2022-07-05
    加拿大研究人员:宽禁带钙钛矿量子点及在天蓝LED的应用

    南方科技大学孙小卫教授课题组AOM:溴离子钝化高效蓝光InP量子点材料与器件研

    半导体照明网获悉:近日,南方科技大学孙小卫课题组通过低温成核、高温包覆的方法成功制备了基于溴离子钝化的高效蓝光InP量子点材料,同时通过配体工程,将长链的十二硫醇配体...
    2022-06-15
    南方科技大学孙小卫教授课题组AOM:溴离子钝化高效蓝光InP量子点材料与器件研

    浙大金一政团队和华南理工大学黄飞/应磊团队合作在量子点发光二极管研究方

    近日,浙江大学金一政课题组、王林军课题组与华南理工大学黄飞 / 应磊团队合作,在高性能蓝、绿光量子点发光二极管( QLED )的开发上取得进展。研究者揭示了无机量子点 / 有机高...
    2022-05-23
    浙大金一政团队和华南理工大学黄飞/应磊团队合作在量子点发光二极管研究方

    厦大张荣教授团队与台交大郭浩中教授团队合作:Micro LED色转换研究领新进展

    随着人工智能、图像识别和5G通信技术的快速发展,增强现实(AR)和虚拟现实(VR)技术正以惊人的速度发展。新冠疫情背景下,远程办公和远程消费交互日益增加,市场再次将注意力转向...
    2022-07-27
    厦大张荣教授团队与台交大郭浩中教授团队合作:Micro LED色转换研究领新进展

    剖析丨InP衬底的制备以及产业化现状

    磷化铟(InP)目前已成为光电器件和微电子器件不可或缺的重要半导体材料。本期1°姐将为大家详细介绍InP单晶衬底的制备以及产业化现状。 一、InP性能简介 磷化铟(InP) 是一种具有...
    2021-05-23
    剖析丨InP衬底的制备以及产业化现状

    网站栏目